当前位置:好百科>百科问答>怎么证明圆弧相等所对的圆周角相等

怎么证明圆弧相等所对的圆周角相等

2024-11-03 23:26:53 编辑:zane 浏览量:591

怎么证明圆弧相等所对的圆周角相等

的有关信息介绍如下:

圆周角的陆改判度数等于它所对弧上的圆心角度数的一半

 已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.

证明:

情况1:

如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:

图1

怎么证明圆弧相等所对的圆周角相等

∵OA、OC是半径

解:∴OA=OC

∴∠BAC=∠ACO(等边对等角)

∵∠BOC是△AOC的外角

∴∠BOC=∠BAC+∠ACO=2∠BAC

情况2:

如图2,,当圆心O在∠BAC的内部时:

连接AO,并延长AO交⊙O于D

图2

怎么证明圆弧相等所对的圆周角相等

∵OA、OB、OC是半径

解:∴OA=OB=OC

∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)

∵∠BOD、∠COD分别是△AOB、△AOC的外角

∴∠BOD=∠BAD+∠ABO=2∠BAD(三角早改形的外角等于两个不相邻两个内角的和)

∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)

∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC

情况3:

怎么证明圆弧相等所对的圆周角相等

如图3,当圆心O在∠BAC的外部时:

图3

连接AO,并延长AO交⊙O于D连接OA,OB。

解:∵OA、OB、OC、是半径

∴OA=OB=OC

∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC)

∵∠DOB、∠DOC分别是△AOB、△AOC的外角

∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不歼缓相邻两个内角的和)

∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)

∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC

利用这个定理,把把相等的圆弧对的圆周角,转化为圆心角,利用三角形全等就可以证明。

版权声明:文章由 好百科 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.haobaik.com/answer/188980.html
热门文章