磁约束核聚变的基本原理
的有关信息介绍如下:根据氘氚聚变的反应截面计算,一团氘氚混合气体,需要达到10千电子伏(等于1.16×10开)以上的温度,氘、氚原子核才能得到足够高的速度来克服它们相互之间的静电排斥力而接近到有足够的几率穿透核势垒,发生聚变,从而释放出核内蕴藏的能量,并超过轫致辐射等能量损耗而提供能量增益。10千电子伏的温度为标准状态温度(273开)的42500倍。在这样的高温下,已经完全电离的氘氚等离子体,如果保持它原来作为气体在标准状态时的密度,则它的压强会达到170000大气压(由于每个氘氚气混合体分子电离成为两个原子核和两个自由电子,分别产生压力,因此得到4倍于未电离时的压强)。因此,除非是用高密度的向心聚爆(见惯性约束聚变)等尚在探索中的、正闭高度困难的方法,人们只能指望在较稀薄的等离子体密度,例如10τ米中进行受控的氘氚热核聚变。即使这样,一般的容器也无法使用。因为,任何材料的容器壁都不可能承受这样的高温,而且器壁一和高温等离子体接触,受到等离子体内发出的高速粒子和辐射的强烈轰击,放出杂质进入等离子体,就会导致等离子体的冷却而使热核反应停熄。另一方面,在这样的高温稀薄等离子体内,原子核的平均自由程很长,原子核形成后立即四散飞行,穿出等离子体,两个原子核碰撞发生聚变的几率很小。在温度为10千电子伏的氘氚等离子体中,自由电子的运动速度平均约为4×10米/秒,氘核和氚核的速度平均约为6×10米/秒。根据带电粒子碰撞理论计算,在10τ米的密度中,这样速度的粒子,两次弹性碰撞(偏转90°)之间的平均自由程约为10米。就是说,氘氚聚变等离子体的大小尺度需要达到10米,即10公里,粒子之间才有足够的互相碰撞的机会。即使在这么大的等离子体中,由于聚变反应的截面(10厘米)比带电粒子互相碰撞的截面(10厘米还要小很多,发生聚变的几率还是太小,不足以取得有实用意义的聚变功率。
换一个估算方法。在尺度为10米这么巨大的,密度10τ米、温度10千电子伏的氘氚等离子体中,按等离子体的大小和粒子自由飞行的速度计算,一个祥枯自由电子在它里面停留的时间,平均仅为0.03秒,远小于受控热核聚变基本条件所要求的1秒;聚变发生的能量大部分都会被自由电子带走而损失掉。
总起来看,尺度为1000公里的超高温稀薄氘氚等离子体,过于庞大,不可能期待它成为经济上有利的能源。必须寻求一个办法,把热核聚变等离子体缩小,使制取聚变能的机器设备不致于过分巨大。现在,依靠磁场对等离子体的约束作用使热核聚变等离子体的体积几个数量级地缩小的方法,经过多年的研究,已经取得成效。磁约束是个复杂的过程。它的第一步,也是磁约束首要的作用,可以用处于均匀磁场中的等离子体的运动情况来说明。
图1表示一个放在磁场中的长圆柱形等离子体,磁场原来是均匀的,强度为Bo,磁力线平直而均匀分布,等离子体圆柱沿磁场Bo方向放置。组成等离子体的带电粒子的运动可以分解成两个分量,平行于磁场的速度分量为v〃,垂直于磁场的速度分举宴裂量为v寑。按照法拉第电磁感应定律,带电粒子运动切割磁力线时,会受到电磁感应产生的洛伦兹力的作用,洛伦兹力的大小为qvBsinθ,方向和粒子速度v及粒子所在处的磁场B垂直,式中q是粒子所带的电荷,θ是v和B之间的夹角。对于粒子在平行方向的运动,θ=0,洛伦兹力为0,不受磁场的影响,因此粒子保持它原有的速度v〃沿磁力线方向运动。对于粒子在垂直方向的运动,θ=90°,洛伦兹力为qv寑B0,这个力使粒子在垂直于B0的平面上作圆形的回旋运动,作这一圆周运动所需的向心力mv嵟/r由洛伦兹力提供,即qv寑B0=mv嵟/r,式中m是粒子的质量,r是圆周的半径。由此可推得,粒子回旋运动的半径为r=mv寑/qB0。例如,磁场为1特斯拉时,能量10千电子伏的氘核或氚核,平均的回旋半径不到2厘米;同样能量的自由电子,回旋半径才0.02厘米。平行运动和垂直运动叠加起来,在磁场中等离子体的带电粒子就好像串绕在一条一条磁力线上,沿着磁力线作半径微小的螺旋形运动,直到粒子之间的碰撞使它们离开各自原来串绕的磁力线。而这种碰撞,平均起来说,要等到一个粒子绕行的总距离达到一个平均自由程时,才会发生;而且,按照无规行走的统计规律,每碰撞一次,一个粒子平均地说也只偏离原来串绕的磁力线一个回旋半径的距离。以上就是磁约束等离子体的微观图像。
进一步考察可以看到,每一个作螺旋形运动的带电粒子,就是一个微小的螺旋形的电流。这个微小电流产生的磁场,无论是电子或离子,按法拉第电磁感应定律,基本上是和外加的感应磁场B0方向相反的,是一种抗磁性。这些单个粒子所形成的微小电流,叠加的结果,宏观地表现为,在圆柱表面上横向流动的电流I(图1)。这个表面电流产生的磁场BI把圆柱内部原有的磁场B0抵消一部分,结果圆柱内的磁场为Bi=B0-BI,圆柱外的磁场仍为B0。用磁场压强的概念,等离子体圆柱外的磁压强为B娿/2μ,圆柱内的磁压强为B/2μ,式中μ为磁导率。圆柱外的磁压强大于圆柱内的磁压强,超过的部分即可平衡圆柱内的等离子体压强p,对它起到约束的作用。当时,等离子体可以维持宏观的平衡,既不扩张又不被压缩。
由此就可得到一种利用磁场约束等离子体的、理想化的设备。这是一个很长的圆筒形的真空室,内充稀薄的氘氚气体;外面绕上导线所成的直螺线管,真空室内产生磁场来约束其中产生的等离子体。宏观地看,等离子体平常没有磁性,但一旦加上磁场时,等离子体中的带电粒子运动就发生变化,形成如上所述的粒子回旋运动,产生抗磁性,表现为磁性等离子体──一种抗磁性流体物质,从而被外磁场所约束。
按照磁场中粒子横越磁力线扩散的理论计算,圆筒形真空室中等离子体圆柱的直径不必大于1米,比不用磁场时,按热核等离子体中粒子自由飞行的情况所需的10米,缩小到10倍。这就是用磁场约束热核聚变等离子体的主要优点。但这种约束作用,只表现在垂直于磁场的方向;在平行于磁场的方向,等离子体仍没有得到约束,圆筒真空室仍需长达10米。等离子体沿圆筒真空室两端逸出损失,成为需要进一步研究解决的问题。